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Presence Detection

»  Wi-Fi sensing using Channel State Information (CSI) is an innovative approach . Ap.l‘?'y . ?;Ievel wav[?llet tr?r[llsform Iio gﬁ:\ld?ta :10 capture sharp tranS|_t|ons an;_j |ntr|n3|c_: Er.opertles « Detect human presence in a home with >90 % True Positive rate with commodity WiFi
that leverages the characteristics of wireless signals to detect and analyze » Utilize a Recurrent Neural Network (RNN) for home presence detection, configured with input CSI device
environmental changes dimensions of 200 and a hidden layer of 64 units
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Highest and Average Test Accuracy Across Rooms

* Presence Localization: Localize human presence, determining whether a
person is near the access point (AP) or near the device
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2 « Each room is a test set once (leave-one-room-out cross-validation) to ensure generalization.  |odw 178 7 69 ; 2 ; ; ;
i Data is reshaped and labeled.
Model Training ‘é’ « The model uses a pre-trained ResNet50 base with custom layers, trained for 20 epochs,
S batch size 16, Adam optimizer, and sparse categorical cross entropy loss. Learning rate Limitations for Model Performance:
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e ’ re- o I ' I I ' ! 1l isi I f1- rt . e . :
Evaluation [ roeeiii '« Classification f«— Eifrgg:on + orocessing | Highest validation accuracy for each room is recorded, showing the model's ability to detect precilan; s s suppo factors can significantly impact dataset consistency
. BRI S B JER ) L ) and localize human presence. Ches 04 043 . 031 % . Limited Data Size: Insufficient data collected from
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LonfaIlzatlon from specific points tq device distance ranges (0-1m, 1-2m, 2-3m, 3-4m) ass:34 0 Environmental diversity (e.g., room size, furniture,
: Ut|I.|z.ed LSTM and RNN models trained on 1,896.samples and tested on 200 sgmples. ambient noise) affects WiFi signal propagation
Devices Setup Training set included samples from 9 rooms, while the test set focused on a single room

« 2 ESP32-S3 chips (Tx and Rx), Espressif ESP CSI toolkit

« Bandwidth: 802.11n, 20 MHz

* Subcarriers: 52 CSI Magnitude V. Subcarriers Plot for No CSI Magnitude V. Subcarriers Plot for Presence CSI Magnitude V. Subcarriers Plot for Presence

- Send Frequency: 100 packets/second Presence near AP nead device
Room Selection (25 rooms total)

« 10 rooms (near AP/near device)

« 10 rooms(Positional Point; 0-1m, 1-2m, 2-3m, 3-4m)

« 5rooms (random configurations for human presence)
Environments

« Study rooms, lab rooms, living rooms

« Data Classification

« No one present/Someone near transmitter/Someone near receiver

. Expanding Data Collection: gather data from a [1] Chen X. xyanchen/WiFiCSISensingBenchmark
wider range of environments to improve mode|  !Intermetl. 2022. Available from: = |

https://github.com/xyanchen/WiFiCSISensingBenchmark
robustness. 2tab=MITlovfile

« Enhanced Generalization: Explore the potential [2] zhan z. zhanchaocheng/ESPCSI [Internet]. 2023.
of transfer Iearning to improve mode| Available from: https://github.com/espressif/espcsi

adaptability across different environments.




